Optimization of RGD-modified Nano-liposomes Encapsulating Eptifibatide

Authors

  • Farid Dorkoosh Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
  • Farzad Kobarfard Department of Medical Chemistry, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  • Hassan Bardania Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
Abstract:

Background: Eptifibatide (Integrilin) is an intravenous (IV) peptide drug that selectively inhibits ligand binding to the platelet GP IIb/IIIa receptor. It is an efficient peptide drug, however has a short half-life. Therefore, antithrombotic agents like eptifibatide are required to become improved with a protected and targeted delivery system such as using nano-liposomes to the site of thrombus. Objectives: The goal in the present report was to optimize encapsulation efficiency of the eptifibatide into Arg-Gly-Asp (RGD)-modified nano-liposomes (RMNL). As well, it was intended to evaluate the effect of sodium lauryl sulfate (SLS) on drug release. Materials and Methods: The effect of five independent variables including number of freeze/thawing cycles, concentration of eptifibatide, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol, and dipalmitoyl-GRGDSPA peptide on drug entrapment efficiency (DEE) was investigated using response surface methodology (RSM). The effect of different concentrations of SLS on encapsulation and drug release from RMNL was also investigated. The size and morphology of RMNL were characterized using transmission electron microscopy (TEM). Results: The maximum DEE (38%) was obtained with 7 freeze/thawing cycles, 3.65 mmoL eptifibatide, 7 mM DSPC, 3 mM cholesterol, and 1 mM dipalmitoyl- GRGDSPA peptide. SLS has significantly increased the drug release from RMNL, although its effect on encapsulation efficiency was not significant. Conclusions: The optimization of the formulations for valuable and expensive peptide drugs is essential to have the maximum encapsulation efficiency and the minimum experiments.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

RGD-Modified Nano-Liposomes Encapsulated Eptifibatide with Proper Hemocompatibility and Cytotoxicity Effect

Background: Eptifibatide (Integrilin®) is a hepta-peptide drug which specifically prevents the aggregation of activated platelets. The peptide drugs are encapsulated into nanolipisomes in order to decreasing their side effects and improving their half-life and bioavailability. Objectives: In this study, the in vitro cytotoxicity and hemocompatibi...

full text

Optimization and characterization of Aspirin Encapsulated nano-Liposomes

Resistance to aspirin and its cytotoxicity significantly limits its therapeutic applications. Nano-liposomal encapsulation of aspirin can reduce its cytotoxicity. In this study, aspirin encapsulated nano-liposomes (AS-NL) was prepared and its performance in drug delivery and cytotoxicity was evaluated. The effects of two independent variables including: number of freeze/thawing cycles and conce...

full text

Optimization and characterization of Aspirin Encapsulated nano-Liposomes

Resistance to aspirin and its cytotoxicity significantly limits its therapeutic applications. Nano-liposomal encapsulation of aspirin can reduce its cytotoxicity. In this study, aspirin encapsulated nano-liposomes (AS-NL) was prepared and its performance in drug delivery and cytotoxicity was evaluated. The effects of two independent variables including: number of freeze/thawing cycles and conce...

full text

Response Surface Methodology for the Optimization of Lactoferrin Nano-Liposomes

The purpose of this study was to optimize the formulation of lactoferrin nano-liposomes using response surface methodology. Response surface methodology based on central composite rotatable design has been successfully used to model and optimize biochemical and biotechnological processes. The mass ratio of phosphatidylcholine and cholesterol (1-8), lactoferrin concentration (2-15 mg/mL), tween8...

full text

Techniques for encapsulating bioactive agents into liposomes.

As a prerequisite for the use of liposomes for delivery of biologically active agents, techniques are required for the efficient and rapid entrapment of such agents in liposomes. Here we review the variety of procedures available for trapping hydrophilic and hydrophobic compounds. Considerations which are addressed include factors influencing the choice of a particular liposomal system and tech...

full text

Aldehyde-encapsulating liposomes impair marine grazer survivorship.

In the last decade, there has been an increased awareness that secondary metabolites produced by marine diatoms negatively impact the reproductive success of their principal predators, the copepods. Several oxylipins, products of the enzymatic oxidation of fatty acids, are produced when these unicellular algae are damaged, as occurs during grazing. In the past, the dinoflagellate Prorocentrum m...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 14  issue 2

pages  33- 40

publication date 2016-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023